Supplemental Material

Mathematical transmission model: It is relatively easy to show that if A(R,T) represents the adult mosquito birth rate,
4(T) the per capita death rate and we assume a fixed duration of latency in humans, the system dynamics can be

described by the coupled delay-differential equations, representing a deterministic disease model in a static environment,
S, =A(R,T)—a(T)b,I,S,, /N —u(T)S,,,
Ey =a(Mbyl, S, /N —u(TM)E, —aMbl, (t-7, (T))S, (t—7, (TN, (T)/N,
Ly =abily, (t =7y (1)Sy (t=7, M, (T)/N = u(T)1,,
S, =-a(T)b,l,S, /N,

IH' =a(M)b,ly (t—7,)Sy(t—7,)/N-A,,

where the biting rate, mortality hazard (hence daily survival probability) and duration of the sporogonic cycle depend on
temperature T (see Supplemental Material, Table 1) (Martens 1998) and all other parameters are defined in Supplemental
Material, Table 2 (with baseline numerical values in Supplemental Material, Table 3). Vector parameters are estimated for

Anopheles maculipennis (Martens 1998).

We write the birth rate of adult mosquitoes as A(R,T) = Bp:(R)p_ (R)p, (T) ps (R)/(z +7,(T)+7,) where B
is the number of eggs laid per adult per oviposition, P., P, and P, are the daily survival probabilities of eggs, larvae and
pupae and 7, 7, and 7, are the durations of each of these stages. We assume that B is independent of environmental

conditions, development times in each stage are dependent only on temperature if there is sufficient rainfall to sustain
development and independent effects of temperature and rainfall on the daily survival probability of larvae. Data from
Depinay et al. (2004) for the development times from eggs to larvae and pupae to adults suggest that these are
approximately independent of temperature, while the development time from larvae to pupae varies with temperature as

7, (T) =1/(aT + B) (Craig et al. 1999; Jepson et al. 1947). Although rainfall has been shown to generally increase malaria



prevalence (Sutherst 2004), it has also been reported that excessive rainfall can reduce transmission, with a suggested
cause being the flushing out of aquatic breeding habitats (Jepson et al. 1947; Paaijmans et al. 2007). The simplest non-linear
model for the dependence of daily survival probabilities on daily rainfall R (in mm) describing this process is, for the

survival of eggs,
pe (R) = (4pye /R R(Rie ~R)

where P, is the peak daily survival probability (corresponding to optimum rainfall for proliferation) and R, is the rainfall

threshold beyond which wash-out effects from excessive rainfall cause no eggs to survive. We assume analogous functional
forms for larvae and pupae and identical wash-out limits. Parameterising this model highlights the difficulty in quantifying
the effects of rainfall on mosquito development and this remains an area where considerably more data is required. It is
important to recognise the role of mathematical modelling in directing such data collection by highlighting areas where

improved data quality will lead to better validated models and more reliable predictions.

Parameterising the rainfall model for immature mosquitoes: Here, we assume that the mosquito surface area in
contact with the water surface is a factor of three higher in pupae than larvae (suggesting a daily survival
probability also a factor of three higher), eggs have the highest daily survival probability (Depinay et al. 2004) and
15% of eggs become adults (Coutinho et al. 2005). Assuming sufficiently high temperatures, the Garnham criteria
requires, on average, a monthly rainfall total exceeding 152mm for malaria transmission (Garnham 1948),
equating to approximately 5mm/day, and we assume that the daily survival probability drops to zero when
rainfall is an order of magnitude greater than this threshold. Substituting e “"*#) for the daily survival probability
of larvae, together with 7 (T) =1/(aT + f), gives the total birth rate A(R,T), while we use the expression in
Martens (1998) for the daily survival probability (at constant humidity) to obtain the per capita death rate

u(T) =1/(AT?+BT +C).

Mosquito population model: For this model, writing down the master equation for p,, (t), the probability that

there are M mosquitoes at time t, gives



d_pgt(t) = ART) Py 1 (0) + 22(T)(M +1) Py 5 (©) = (A(R,T) + (T)M) py (1)

for M(t) =0,1,2,... and where p,(t) = 0. Defining the probability generating function G(z,t) = Zzopizi, we can

show that

0G(z,t)

LD - 4R -6 - uMe-) LD,

which holds in a static (constant R and T ) or fluctuating (R = R(t) and T =T (t)) environment. In the former

case, solving this equation by characteristics (subject to M, initial mosquitoes) gives

M(Z—l)(l—efﬂ(-r)t]

G(z,t)=e “M L+ (z -2 )", [s1c]

ART)
Ast— o, G(z,t) »>e “M and thus p,, (t) tends to a Poisson distribution with mean A(R,T)/u(T),

independent of the initial conditions. Substituting z =0 gives the probability that the mosquitoes become extinct

at or before time t, whereupon letting t — o gives the probability of ultimate extinction as

exp(=A(R,T)/ u(T)).

We can also show that the expected time for mosquito extinction to occur. If T; represents the random variable

for the time to extinction, we have the distribution function of T, as

ART)

P(T, <t) = p,(t) = e_( u(T) J(l’e”mt)(l_e—m)t )Mo

[S1d]

whereupon differentiating to obtain the probability density function and calculating the average time to

extinction in the special case when M, =1 gives t,, =exp(-A(R,T)/ u(T)).



Analysis of the invasion dynamics: Consider the transmission model above during the early stages of an outbreak. In this

regime, S, (t—7,)/N =1 and S,, (t—7,,(T))/M =1, so that the invasion dynamics are described by
Iy, ~a()b,l, (t-7,)-Ay,
Ly =aMbM (R T, (=7 Ty (T)/N = p(T1,,.

To solve these equations for the rate of spread in humans, we note, with a view to rewriting these equations as a
single matrix equation, that |, and its derivatives (at any time) dependon 1, I,,(t), I,,(t—7,) and I',\,I (t), giving
a dependence on four unknowns with two independent equations. Differentiating and considering the resultant

equation, as well as that for |, (t), at time t+7,, gives

di, (t+7,)

i =a(M)b,l, t)-A,(t+7,),

d (t) _ (a(T)blM (R.T)

dt N jIH(t_TM My (M) = (M1, _a(T)bZIU(T)IM(t)_y{H (t+7,),

dl, (t+7e) _ [a(l')zblsz(R,T)

dt? N jIH(t_TM)IM (M),

so that |, and its derivatives now depend only on 1, I, (t) and I, (t) and we have three independent
equations, sufficient to find a unique solution for 1, (t). Rewriting as a matrix equation and expanding the

resulting determinant allows us to derive an ODE for the number of infectious humans as
i-H (t+TH)+(ﬂ(T)+?/)I.H (t+TH)+,U(T)7(IH (t+74)-Ry(MIt-7, (T))): 0.

Substituting the trial solution I, (t) =" (with growth rate r) gives

2™+ (u(T) +)re”™ + u(T)yle™ —R (e ™™ ™)=0,



which reduces to the standard growth rate equation for the SEIR model when 7, =0.
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Supplemental Material, Table 1. Functional forms for quantities in the transmission model

Parameter Functional form Units
a(m) T-T, Per day
Dl
u(T) 1 Per day
AT?+BT +C
7, (T) DD Days
T _Tmin

Supplemental Material, Table 2. Transmission model parameter definitions

Parameter | Definition (and units)

AR, T) Adult mosquito birth rate per day

u(T) Adult mosquito per capita death rate (per day)

a(T) Mosquito biting rate per day

b, Proportion of bites by susceptible mosquitoes on infected humans that produce infection
7 (T) Duration of the sporogonic cycle (days)

Iy (M) Survival probability of infected mosquitoes over the incubation period of the parasite

b, Proportion of bites by infectious mosquitoes on susceptible humans that produce infection
Ty Latent period of infection within humans (days)

1y Human average duration of infectiousness (days)

M (t) Total number of mosquitoes (S,, (t) + E,, (t) + 1, (t))

N Total number of humans (S, (t) + 1, (t) + R, (1))




Supplemental Material, Table 3. Baseline parameter values of the transmission model

Parameter Assumed value Units

B 200 Dimensionless
Pue 0.9 Dimensionless
P 0.25 Dimensionless
Pup 0.75 Dimensionless
R, 50 mm

Te 1 days

a 0.00554 ("Cdays) ™

p -0.06737 (days)™

s 1 Days

T 19.9 °C

D, 36.5 °Cdays

b, 0.04 Dimensionless
A -0.03 ("C’days)™

B 1.31 ("Cdays)™

C -4.4 days™

b, 0.09 Dimensionless
Ty 10 days

DD 111 (P. falciparum) °C days

105 (P. vivax)
Toin 16 (P. falciparum) °C
14.5 (P. vivax)
y 1/120 days™
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